公式法教学设计2
[10-16 11:56:27] 来源:http://www.xuehuiba.com 九年级数学教案 阅读:8245次
概要: 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m2+1=0,m不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- . 五、归纳小结 本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。 (4)初步了解一元二次方程根的情况. 六、布置作业
公式法教学设计2,标签:中学数学教案,http://www.xuehuiba.com
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x=
C.x= &nb来源于www.xuehuiba.com
2.方程 x2+4 x+6 =0的根是( ).
A.x1= ,x2= B.x1=6,x2=
C.x1=2 ,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份 用电量(千瓦时) 交电费总金额(元)
3 80 25
4 45 &nbs www.xuehuiba.com
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x=
C.x= &nb来源于www.xuehuiba.com
公式法教案2
来源于www.xuehuiba.comsp; D.x=2.方程 x2+4 x+6 =0的根是( ).
A.x1= ,x2= B.x1=6,x2=
C.x1=2 ,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份 用电量(千瓦时) 交电费总金额(元)
3 80 25
4 45 &nbs www.xuehuiba.com
p; 10
根据上表数据,求电厂规定的A值为多少
Tag:九年级数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案
上一篇:判别一元二次方程根的情况教学设计
分类导航
最新更新
推荐热门
- · 二次函数免费教学案下载1
- · 直接开平方法教学设计2
- · 一元二次方程教学设计2
- · 数学教学设计-画正多边形
- · 数学教学设计-反比例函数及其图象
- · 数学教学设计-圆内接四边形
- · 数学教学设计-两圆的位置关系
- · 正多边形和圆
- · 过三点的圆
- · 两圆的公切线