当前位置:学会吧学习辅导免费教案下载数学教案九年级数学教案两圆的公切线» 正文

两圆的公切线

[10-16 11:56:27]   来源:http://www.xuehuiba.com  九年级数学教案   阅读:8940
概要:1的弦AB与小圆⊙O2相切于C点.是否有:∠APC=∠BPC即PC平分∠APB.答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.(三)练习练习1、教材145练习第2题.练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.求证:PA·PB=PD·PC.证明:过点P作两圆的公切线EF∵ AB是小圆的切线,C为切点∴∠FPC=∠BCP,∠FPB=∠A又∵∠1=∠BCP-∠A∠2=∠FPC-∠FPB∴∠1=∠2∵∠A=∠D,∴△PAC∽△PDB ∴PA·PB=PD·PC说明:此题在例2题的拓展的基础上解得非常容易.(三)总结学习了两圆的公切线,应该掌握以下几个方面1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形. 3、常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.4、自己要有深入研究问题的意
两圆的公切线,标签:中学数学教案,http://www.xuehuiba.com
1的弦AB与小圆⊙O2相切于C点.

  是否有:∠APC=∠BPC即PC平分∠APB.

  答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.

  (三)练习

  练习1、教材145练习第2题.

  练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.

  求证:PA·PB=PD·PC.

  证明:过点P作两圆的公切线EF

  ∵ AB是小圆的切线,C为切点

  ∴∠FPC=∠BCP,∠FPB=∠A

  又∵∠1=∠BCP-∠A  ∠2=∠FPC-∠FPB

  ∴∠1=∠2  ∵∠A=∠D,∴△PAC∽△PDB

  

  ∴PA·PB=PD·PC

  说明:此题在例2题的拓展的基础上解得非常容易.

  (三)总结

  学习了两圆的公切线,应该掌握以下几个方面

  1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.

  2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形. 

  3、常用的辅助线:

  (1)两圆在各种情况下常考虑添连心线;

  (2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.

  4、自己要有深入研究问题的意识,不断反思,不断归纳总结.

  (四)作业教材P151习题中15,B组2.
探究活动

  问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D.

  (1)用量角器量出∠EAF与∠CBD的大小,根据量得结果,请你猜想∠EAF与∠CBD的大小之间存在怎样的关系,并证明你所得到的结论.

  (2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由.

  (3)如果将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.

 

  提示:(1)(2)(3)都有∠EAF+∠CBD=180°.证明略(如图作辅助线).

  说明:问题从操作测量得到的实验数据入手,进行数据分析,归傻贸霾孪耄っ鞑孪氤闪ⅲ庖彩?a href=http://www.xuehuiba.com/Class/034/ target=_blank>数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为∠CAD=90°.


上一页  [1] [2] [3] 


Tag:九年级数学教案中学数学教案免费教案下载 - 数学教案 - 九年级数学教案
《两圆的公切线》相关文章
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13