用列举法求概率教学设计
[10-16 11:56:27] 来源:http://www.xuehuiba.com 九年级数学教案 阅读:8248次
概要: 在本次活动中,教师应重点关注学生参与数学活动是否积极主动,全神贯注。 使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础。 「活动3」 探究在概率公式P(A)= 中m、n之间的数量关系,P(A)的取值范围。(演示课件第3张幻灯片) 学生思考,解答、发言: n>0, m≥0,m≤n,0≤P(A) ≤1. 当m=n时A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0. 教师组织学生思考、讨论、解答. 在本次活动中,教师应重点关注学生对随机事件、必然事件、不可能事件及其概率的再认识。 进一步体会随机事件、必然事件、不可能事件及其概率。 「活动4」 通过解决问题学习用列举法求概率。 问题1(演示课件第4张幻灯片) 例1 掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;
用列举法求概率教学设计,标签:中学数学教案,http://www.xuehuiba.com
在本次活动中,教师应重点关注学生参与数学活动是否积极主动,全神贯注。
使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础。
「活动3」
探究在概率公式P(A)= 中m、n之间的数量关系,P(A)的取值范围。(演示课件第3张幻灯片)
学生思考,解答、发言:
n>0, m≥0,m≤n,0≤P(A) ≤1.
当m=n时A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.
教师组织学生思考、讨论、解答.
在本次活动中,教师应重点关注学生对随机事件、必然事件、不可能事件及其概率的再认识。
进一步体会随机事件、必然事件、不可能事件及其概率。
「活动4」
通过解决问题学习用列举法求概率。
问题1(演示课件第4张幻灯片)
例1 掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数是奇数;
(3)点数大于2且不大于5.
问题2(演示课件第5、6张幻灯片)
例1变式 掷1个质地均匀的正方体骰子,观察向上一面的点数,
(1)求掷得点数为2或4或6的概率;
(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率。
问题3(演示课件第7张幻灯片)
例2 如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红、黄、绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时,当作指向右边的扇形)求下列事件的概率:
(1)指向红色;
(2)指向红色或黄色;
(3)不指向红色。
问题4(演示课件第8、9两张幻灯片)
例2变式 如图,是一个转盘,转盘被分成两个扇形,颜色分别为红黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率。
(1)指向红色;
(2)指向黄色。
(3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
教师组织学生分析本问题,运用列举法求其概率:
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
教师介绍解题要求、步骤。
例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)点数为2只有1种结果,P(点数为2);
(2)点数是奇数有3种可能,即点数为1,3,5,P(点数是奇数);
(3)点数大于2且不大于5有3种可能,即3,4,5,P(点数大于2且不大于5).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例1变式 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A);
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种。他第六次掷得点数2(记为事件B)有1种结果,因此P(B).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
鼓励学生解答:
例2解:一共有7个等可能的结果,且这7个结果发生的可能性相等,
(1)指向红色有3个结果, P(指向红色)=_____ ;
(2)指向红色或黄色一共有5种等可能的结果,P(指向红色或黄色)=_______;
(3)不指向红色有4种等可能的结果,P( 不指向红色)= ________。
引导学生分析:
图中两个扇形的圆心角不相等,某个扇形停在指针所指的位置的可能性 www.xuehuiba.com
在本次活动中,教师应重点关注学生参与数学活动是否积极主动,全神贯注。
使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础。
「活动3」
探究在概率公式P(A)= 中m、n之间的数量关系,P(A)的取值范围。(演示课件第3张幻灯片)
学生思考,解答、发言:
n>0, m≥0,m≤n,0≤P(A) ≤1.
当m=n时A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.
教师组织学生思考、讨论、解答.
在本次活动中,教师应重点关注学生对随机事件、必然事件、不可能事件及其概率的再认识。
进一步体会随机事件、必然事件、不可能事件及其概率。
「活动4」
通过解决问题学习用列举法求概率。
问题1(演示课件第4张幻灯片)
例1 掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数是奇数;
(3)点数大于2且不大于5.
问题2(演示课件第5、6张幻灯片)
例1变式 掷1个质地均匀的正方体骰子,观察向上一面的点数,
(1)求掷得点数为2或4或6的概率;
(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率。
问题3(演示课件第7张幻灯片)
例2 如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红、黄、绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时,当作指向右边的扇形)求下列事件的概率:
(1)指向红色;
(2)指向红色或黄色;
(3)不指向红色。
问题4(演示课件第8、9两张幻灯片)
例2变式 如图,是一个转盘,转盘被分成两个扇形,颜色分别为红黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率。
(1)指向红色;
(2)指向黄色。
(3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
教师组织学生分析本问题,运用列举法求其概率:
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
教师介绍解题要求、步骤。
例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)点数为2只有1种结果,P(点数为2);
(2)点数是奇数有3种可能,即点数为1,3,5,P(点数是奇数);
(3)点数大于2且不大于5有3种可能,即3,4,5,P(点数大于2且不大于5).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例1变式 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A);
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种。他第六次掷得点数2(记为事件B)有1种结果,因此P(B).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
鼓励学生解答:
例2解:一共有7个等可能的结果,且这7个结果发生的可能性相等,
(1)指向红色有3个结果, P(指向红色)=_____ ;
(2)指向红色或黄色一共有5种等可能的结果,P(指向红色或黄色)=_______;
(3)不指向红色有4种等可能的结果,P( 不指向红色)= ________。
引导学生分析:
图中两个扇形的圆心角不相等,某个扇形停在指针所指的位置的可能性 www.xuehuiba.com
就不相等?怎么办?
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例2变式 解:把黄色扇形平均分成两份,这样三个扇形的圆心角相等,某个扇形停在指针所指的位置的可能性就相等了,因而共有3种等可能的结果,
(1)指向红色有1种结果, P(指向红色)=_____;
(2)指向黄色有2种可能的结果,P(指向黄色)=_______。
Tag:九年级数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案
上一篇:《圆周角的性质》教学设计例
分类导航
最新更新
推荐热门
- · 二次函数免费教学案下载1
- · 直接开平方法教学设计2
- · 一元二次方程教学设计2
- · 数学教学设计-画正多边形
- · 数学教学设计-反比例函数及其图象
- · 数学教学设计-圆内接四边形
- · 数学教学设计-两圆的位置关系
- · 正多边形和圆
- · 过三点的圆
- · 两圆的公切线