交集、并集
[10-16 11:56:27] 来源:http://www.xuehuiba.com 高一数学教案 阅读:8813次
概要: 答:图示法表示的集A. 答:集A中子集A交B的补集. 答:上述区域出现阴影. 口答结合板书 答:出现阴影. 口答结合板书 认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合. 答:出现阴影. 思考:答:该集合中所有元素属于集合A或属于集合B. 倾听,理解. 回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集. 倾听.比较.记忆. 倾听,记忆. 倾听.爱好记忆.比较记忆,. 直观性原则.多媒体助学. 用直观、感性的例子为引入交集做铺垫. 渗透集合运算意识. 直观的感知交集. 培养从直观、感性到理性的概括抽象能力. 解决难点. 爱好激励.比较记忆 培养用描述法表示集合的能力. 培养想象能力. 以新代旧. 突出重点. 概念迁移为能力.
交集、并集,标签:高中数学教案,http://www.xuehuiba.com
答:图示法表示的集A.
答:集A中子集A交B的补集.
答:上述区域出现阴影.
口答结合板书
答:出现阴影.
口答结合板书
认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合.
答:出现阴影.
思考:答:该集合中所有元素属于集合A或属于集合B.
倾听,理解.
回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集.
倾听.比较.记忆.
倾听,记忆.
倾听.爱好记忆.比较记忆,.
直观性原则.多媒体助学.
用直观、感性的例子为引入交集做铺垫.
渗透集合运算意识.
直观的感知交集.
培养从直观、感性到理性的概括抽象能力.
解决难点.
爱好激励.比较记忆
培养用描述法表示集合的能力.
培养想象能力.
以新代旧.
突出重点.
概念迁移为能力.
进一步培养观察能力.
培养观察能力
以新代旧.
培养整体观察能力.
培养从直观、感性到理性的概括抽象能力.
解决难点.比较记忆.
爱好激励,辩易混.比较记忆.
设问集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示?
设问 与A有何关系?如何表示?与B有何关系?如何表示?
随练写出 , 的并集.
设问大家是如何写出的?
例1设 , ,求 (以下例题用投影仪打出,随用随启).
助练本例实为解不等式组,用数轴法找出公共部分,写出即可.
例2设 ,
,求
例3设 , ,求
例4设 ,
,求
助学数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件).
助练以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4.
练习教材第12页练习1~5.
助练
1.全集与其某个子集的交集是哪个集合?
2.全集与其某个子集的并集是哪个集合?
3.两个无公共元素的集合的交集是什么集合?
4.两个无公共元素的集合A、B,它们的并集如何表示?
5.任意集合A与其本身的交集、并集分别是什么集合?如何表示?
6.任意集A与空集的交集、并集分别是什么集合?如何表示?
7. 与 的关系如何表示? 与 的关系如何表示?
例5设 , ,求
助思
1.集A、集B各是什么集合?
2.如何理解
3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题.
例6已知A为奇数集,B为偶数集,Z为整数集,求 ,, ,,
,
助学
1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示?
2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?)
例7设 , , ,求 , , , .
思考:“列举法还是描述法?”
答:描述法.
思考.议论.
  www.xuehuiba.com
答:图示法表示的集A.
答:集A中子集A交B的补集.
答:上述区域出现阴影.
口答结合板书
答:出现阴影.
口答结合板书
认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合.
答:出现阴影.
思考:答:该集合中所有元素属于集合A或属于集合B.
倾听,理解.
回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集.
倾听.比较.记忆.
倾听,记忆.
倾听.爱好记忆.比较记忆,.
直观性原则.多媒体助学.
用直观、感性的例子为引入交集做铺垫.
渗透集合运算意识.
直观的感知交集.
培养从直观、感性到理性的概括抽象能力.
解决难点.
爱好激励.比较记忆
培养用描述法表示集合的能力.
培养想象能力.
以新代旧.
突出重点.
概念迁移为能力.
进一步培养观察能力.
培养观察能力
以新代旧.
培养整体观察能力.
培养从直观、感性到理性的概括抽象能力.
解决难点.比较记忆.
爱好激励,辩易混.比较记忆.
设问集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示?
设问 与A有何关系?如何表示?与B有何关系?如何表示?
随练写出 , 的并集.
设问大家是如何写出的?
例1设 , ,求 (以下例题用投影仪打出,随用随启).
助练本例实为解不等式组,用数轴法找出公共部分,写出即可.
例2设 ,
,求
例3设 , ,求
例4设 ,
,求
助学数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件).
助练以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4.
练习教材第12页练习1~5.
助练
1.全集与其某个子集的交集是哪个集合?
2.全集与其某个子集的并集是哪个集合?
3.两个无公共元素的集合的交集是什么集合?
4.两个无公共元素的集合A、B,它们的并集如何表示?
5.任意集合A与其本身的交集、并集分别是什么集合?如何表示?
6.任意集A与空集的交集、并集分别是什么集合?如何表示?
7. 与 的关系如何表示? 与 的关系如何表示?
例5设 , ,求
助思
1.集A、集B各是什么集合?
2.如何理解
3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题.
例6已知A为奇数集,B为偶数集,Z为整数集,求 ,, ,,
,
助学
1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示?
2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?)
例7设 , , ,求 , , , .
思考:“列举法还是描述法?”
答:描述法.
思考.议论.
  www.xuehuiba.com
; 口答结合板书.
或
想象并集的图示,或回忆并集的概念.
口答结合板书:A和B都是 的子集. ,
口答结合板书:
口答:综合考虑两个集合,从最小数开始,哪个集合的元素都取,一个不能丢,相同元素由集合中元素的互异性只取一次.
审清题意.笔练结合板书.
解:
倾听.理解.
审清题意.口答结合板书.
解:
是直角三角形,且 是直角三角形 是等腰三角形 .
审清题意.口答结合板书.
解: 是锐角三角形 是钝角三角形 是锐角三角形,或 是钝角三角形 是斜三角形 .
审清题意.
画数轴.画出不等式区域.倾听.解:
倾听.理解.
Tag:高一数学教案,高中数学教案,免费教案下载 - 数学教案 - 高一数学教案
分类导航
最新更新