圆心角、弧、弦、弦心距之间的关系(一)
分析:(1)、(2)都是不对的.在图7-54中,因为 和 不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.
例2 如图7-55,点P在⊙O上,点O在∠EPF的角平分线上,∠EPF的两边交⊙O于点A和B.求证:PA=PB.
让学生先思考,再叙述思路,教师板书示范.
证明:作OM⊥PA,ON⊥PB,垂足为M,N.
把P点当做
运动的点,将例2演变如下:
变式1(投影打出)
已知:如图7-56,点O在∠EPF的平分线上,⊙O和∠EPF的两边分别交于点A,B和C,D.
求证:AB=CD.
师生共同分析之后,由学生口述证明过程.
变式2(投影打出)
已知:如图7-57,⊙O的弦AB,CD相交于点P,∠APO=∠CPO,
求证:AB=CD.
由学生口述证题思路.
说明:这组例题均是利用弦心距相等来证明弦相等的问题,当然,也可利用其它方法来证,只不过前者较为简便.
练习1 已知:如图7-58,AD=BC.
求证:AB=CD.
师生共同分析后,学生练习,一学生上黑板板演.
变式练习.已知:如图7-58, = ,求证:AB=CD.
四、师生共同小结
教师提问:
(1)这节课学习了哪些具体内容?
(2)本节的定理和推论是用什么方法证明的?
(3)应注意哪些问题?
在学生回答的基础上,教师总结.
(1)这节课主要学习了两部分内容:一是证明了圆是中心对称图形.得到圆的特性——圆的旋转不变性;二是学习了在同圆或等圆中,圆心角、圆心角所对的弧、所对的弦、所对的弦的弦心距之间的关系定理及推论.这些内容是我们今后证明弧相等、弦相等、角相等的重要依据.
(2)本节通过观察——猜想——论证的方法,从运动变化中发现规律,得出定理及推论,同时遵循由特殊到一般的思维认识规律,渗透了旋转变换的思想.
(3)在运用定理及推论解题时,必须注意要有“在同圆或等圆”这一前提条件.
五、布置作业
思考题:已知AB和CD是⊙O的两条弦,OM和ON分别是AB和 CD的弦心距,如果AB>CD,那么OM和ON有什么关系?为什么?
板书设计
课堂教学设计说明
这份教案为1课时.
如果内容多,部分练习题可在下节课中处理.
——摘自《初中几何教案》
- · 等腰三角形的性质(二)
- · 等腰三角形的性质(一)
- · 回顾与反思
- · 《数学乐园》活动课免费教学案下载与评析
- · 一个数乘以小数2
- · 一个数乘以小数
- · 小数乘以整数
- · 连乘 乘加 乘减 教学设计
- · 积的近似值
- · 复习多边形的面积
- · 连乘 乘加 乘减 教学设计
- · 《数学乐园》活动课免费教学案下载与评析
- · 体积
- · 圆心角、弧、弦、弦心距之间的关系(一)
- · 函数的图象(一)
- · 集合(一)教学设计例
- · 集合与简易逻辑
- · 圆的标准方程
- · 北师大版数学(七年级上)生活中的图形(二
- · 一个数乘以小数2