当前位置:学会吧学习辅导免费教案下载数学教案八年级数学教案数学教学设计-一元二次方程根与系数的关系» 正文

数学教学设计-一元二次方程根与系数的关系

[10-16 11:56:27]   来源:http://www.xuehuiba.com  八年级数学教案   阅读:8459
概要:.(将平方和、倒数和转化为两根和与积的代数式)(三)拓展创新1、在尝试2中能否求(x1-x2)的值?2、已知实数满足关系式a2-5a+6=0,b2-5b+6=0,且a≠b,能否求a+b与ab的值?说明:1、“试一试”是引导学生及时巩固本节所学的新知“根与系数的关系”,其中第(3)小题是培养学生思维严谨性和批判性;第(4)小题是起过渡作用设计。2、尝试题1、2让学生讨论完成或独立完成,可以看书完成,其系数与例题有别。3、“拓展创新”中是培养学生思维的发散性教学设计,也是开放性教学,使有的学生的奇异思维得到发展。(四)归纳小结本课主要研究了什么?1、方程的根是由系数决定的。2、a≠0时,方程ax2+bx+c=0是一元二次方程。3、a≠0,且b2-4ac≥0时,方程ax2+bx+c=0的根为x1、2= 4、b2-4ac的值可判定根的情况。5、a≠0,△≥0时,x1+x2= ,x1x2= www.xuehuiba.com 。6、方程根与系数关系的有关应用。(1)已知一根求另一根及k
数学教学设计-一元二次方程根与系数的关系,标签:中学数学教案,http://www.xuehuiba.com
.(将平方和、倒数和转化为两根和与积的代数式)

(三)拓展创新

1、在尝试2中能否求(x1-x2)的值?2、已知实数满足关系式a2-5a+6=0,b2-5b+6=0,且a≠b,能否求a+b与ab的值?

说明:1、“试一试”是引导学生及时巩固本节所学的新知“根与系数的关系”,其中第(3)小题是培养学生思维严谨性和批判性;第(4)小题是起过渡作用设计。

2、尝试题1、2让学生讨论完成或独立完成,可以看书完成,其系数与例题有别。

3、“拓展创新”中是培养学生思维的发散性教学设计,也是开放性教学,使有的学生的奇异思维得到发展。

(四)归纳小结本课主要研究了什么?1、方程的根是由系数决定的。2、a≠0时,方程ax2+bx+c=0是一元二次方程。3、a≠0,且b2-4ac≥0时,方程ax2+bx+c=0的根为x12= 4、b2-4ac的值可判定根的情况。5、a≠0,△≥0时,x1+x2= ,x1x2=     

www.xuehuiba.com

。6、方程根与系数关系的有关应用。

(1)已知一根求另一根及k的值;(2)求有关代数式的值。

(五)布置作业

P33A 1、2  B  1(1)

练习:1.已知三角形的两边长a、b是方程x2-kx+12=0的两个,等腰三角形的另一条边c=4,求这个等腰三角形的周长。

2、已知关于x的方程x2-2mx+ m2=0.其中分别是一个等腰三角形的腰和底边的长.

(1)         求征这个方程有两个不相等实数根.

(2)         若方程的两个实数根差的绝对值是8,并且等腰三角形的面积是12,求这个三角形的内切圆的面积.

   3、 已知二次函数y=x2+2ax-2b+1和y=-x2+(a—3)x+b2-1的图象都经过x轴上两个不同的点 ,求这两个函数的解析式.


上一页  [1] [2] [3] [4] [5] 


Tag:八年级数学教案中学数学教案免费教案下载 - 数学教案 - 八年级数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13